inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mikhail Gorlov, Andreas Fischer and Lars Kloo*

Inorganic Chemistry, Royal Institute of Technology, 100 44 Stockholm, Sweden

Correspondence e-mail: larsa@inorg.kth.se

Key indicators

Single-crystal X-ray study T = 297 KMean σ (Ga–Cl) = 0.002 Å R factor = 0.047 wR factor = 0.117 Data-to-parameter ratio = 27.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Potassium tetrachlorogallate

From a solution of potassium tetrachloroplatinate and gallium trichloride in benzene, potassium tetrachlorogallate, K[GaCl₄], could be crystallized and its structure determined. The crystal structure is isotypic with Ga[AlCl₄]. It consists of tetrahedral anions $GaCl_4^-$ and potassium cations which are coordinated by Cl⁻ in a tricapped trigonal prismatic geometry.

Comment

The structure of K[GaCl₄] consists of K⁺ ions and tetrahedral [GaCl₄]⁻ ions. The two ions are displayed in Fig. 1. Fig. 2 shows the arrangement in the unit cell. The K⁺ ion is coordinated by nine Cl⁻ ions. The coordination polyhedron can be described as a tricapped trigonal prism. The anions show only a very slight distortion, with interatomic distances ranging from 2.1677 (19) to 2.1730 (17) Å. The angles are in the range 106.05 (7) to 113.13 (9)°, thus rather close to the ideal tetrahedral angle. The structure is isotypic with a number of other structures of the composition $M^{I}[M^{III}X_{4}]$, which have been published earlier. K[AlCl₄] (Mairesse *et al.*, 1978) and K[FeCl₄] (Cerisier *et al.*, 1988) have apparently the same structure. However, they crystallized in space group $P2_{1}$, thus

Figure 1

The (*a*) $GaCl_4^-$ anion and (*b*) K⁺ cation with surrounding Cl^- ions in the structure of K[GaCl_4]. Displacement ellipsoids are drawn at the 70% probability level. Symmetry codes are in Table 1.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 25 March 2003 Accepted 8 April 2003 Online 23 April 2003 lacking the inversion centre. $Ga[AlCl_4]$ (Staffel & Meyer, 1987) is reported with the same structure as the title compound.

Experimental

GaCl₃ (Aldrich Chemical Company, 99.99%, H₂O < 100 p.p.m.) was used as purchased. K₂[PtCl₄] was synthesized according to a literature procedure (Chernyaev, 1964). Toluene was dried prior to use. Carbon monoxide of 99.9995% purity was used. The synthesis of the starting solution was performed in a glove-box under an inert atmosphere of dry nitrogen (< 1 p.p.m. H₂O). Toluene (2.56 g) was added to the solid mixture of K₂[PtCl₄] (100 mg, 0.241 mmol) and GaCl₃ (400 mg, 2.272 mmol). The colour of the solution turned red–brown. After 5– 10 min, the liquid separated into two phases, *viz.* a lower dark brown and an upper light brown layer, in an approximate 1:5 ratio by volume. Carbon monoxide was bubbled through the solution (both phases) at room temperature for 2 h. As a by-product, pale yellow crystals of the title compound formed; these were washed twice with toluene.

Crystal data	
K[GaCl ₄]	$D_x = 2.373 \text{ Mg m}^{-3}$
$M_r = 250.63$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 2561
a = 7.2230 (3) Å	reflections
b = 10.4377 (4) Å	$\theta = 4.2–27.1^{\circ}$
c = 9.3194 (4) Å	$\mu = 5.91 \text{ mm}^{-1}$
$\beta = 93.290(2)^{\circ}$	T = 297 K
$V = 701.45(5) \text{ Å}^3$	Irregular, colourless
Z = 4	$0.60 \times 0.25 \times 0.15 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: numerical (Herrendorf & Bärnighausen, 1997) $T_{\min} = 0.304, T_{\max} = 0.438$ 4148 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0335P)^2]$
$R[F^2 > 2 \sigma(F^2)] = 0.047$	+ 2.9803P]
$wR(F^2) = 0.117$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.17	$(\Delta/\sigma)_{\rm max} < 0.001$
1537 reflections	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$
55 parameters	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$

1537 independent reflections

 $R_{\rm int}=0.037$

 $\theta_{\rm max} = 27.1^{\circ}$ $h = -9 \rightarrow 9$

 $k = -12 \rightarrow 13$

 $l = -8 \rightarrow 11$

1323 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å).

K-Cl3 ⁱ	3.196 (2)	K-Cl4 ^v	3.727 (3)
K-Cl4 ⁱⁱ	3.251 (3)	K-Cl1 ⁱⁱ	3.761 (3)
K-Cl3	3.260 (2)	Ga-Cl2	2.1668 (17)
K-Cl2 ⁱⁱⁱ	3.304 (3)	Ga-Cl4 ⁱⁱⁱ	2.1677 (19)
K-Cl1 ^{iv}	3.310 (2)	Ga-Cl1 ^{vi}	2.1679 (15)
K-Cl2 ⁱⁱ	3.322 (3)	Ga-Cl3 ⁱ	2.1730 (17)
K-Cl1 ⁱⁱⁱ	3.572 (3)		

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (iii) 1 - x, 1 - y, 1 - z; (iv) $x - \frac{1}{2}$, $\frac{3}{2} - y$, $z - \frac{1}{2}$; (v) -x, 1 - y, 1 - z; (vi) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $z - \frac{1}{2}$.

Figure 2 The unit cell of K[GaCl₄], viewed along *a*.

Data collection: *KappaCCD Software* (Nonius, 1997); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *maXus* (Mackay *et al.*, 1998).

The Swedish Research Council (VR) is acknowledged for financial support.

References

- Brandenburg, K. (2001). *DIAMOND*. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Cerisier, J., Guillot, C., Palvadeau, P. & Rouxel, J. (1988). Eur. J. Solid State Inorg. Chem. 25, 35–52.
- Chernyaev, I. I. (1964). Editor. Synthesis of Complex Compounds of Platinum Group Metals. Moscow: Nauka Publishers.
- Herrendorf, W. & Bärnighausen, H. (1997). *HABITUS*. Universities of Giessen and Karlsruhe, Germany.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1998). *maXus*. Bruker–Nonius, The Netherlands, MacScience, Japan and The University of Glasgow, Scotland.
- Mairesse, G., Barbier, P. & Wignacourt, J. P. (1978). Acta Cryst. B34, 1328-1330.
- Nonius (1997). KappaCCD Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Staffel, T. & Meyer, G. (1987). Z. Anorg. Allg. Chem. 552, 108-112.